Two-phase Low Conductivity Flow Imaging Using Magnetic Induction Tomography

نویسندگان

  • H.-Y. Wei
  • M. Soleimani
چکیده

Magnetic Induction Tomography (MIT) is a new and emerging type of tomography technique that is able to map the distribution of all three passive electromagnetic properties, however most of the current interests are focusing on the conductivity and permeability imaging. In an MIT system, coils are used as separate transmitters or sensors, which can generate the background magnetic field and detect the perturbed magnetic field respectively. Through switching technique the same coil can work as transceiver which can generate field at a time and detect the field at another time. Because magnetic field can easily penetrate through the non-conductive barrier, the sensors do not need direct contact with the imaging object. These non-invasive and contactless features make it an attractive technique for many applications compared to the traditional contact electrode based electrical impedance tomography. Recently, MIT has become a promising monitoring technique in industrial process tomography, for example MIT has been used to determine the distribution of liquidised metal and gas (high conductivity two phase flow monitoring) for metal casting applications. In this paper, a low conductivity two phase flow MIT imaging is proposed so the reconstruction of the low contrast samples (< 6 S/m) can be realised, e.g., gas/ionised liquid. An MIT system is developed to test the feasibility. The system utilises 16 coils (8 transmitters and 8 receivers) and an operating frequency of 13MHz. Three different experiments were conducted to evaluate all possible situations of two phase flow imaging: 1) conducting objects inside a non-conducting background, 2) conducting objects inside a conducting background (low contrast) and 3) non-conducting objects inside a conducting background. Images are reconstructed using the linearised inverse method with regularisation. An experiment was designed to image the non-conductive samples inside a conducting Received 6 July 2012, Accepted 17 August 2012, Scheduled 5 September 2012 * Corresponding author: Manuchehr Soleimani ([email protected]). 100 Wei and Soleimani background, which is used to represent the size varying bubbles in ionised solution. The temporal reconstruction algorithm is used in this dynamic experiment to improve the image accuracy and noise performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Employing dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype

Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...

متن کامل

Application of a single step temporal imaging of magnetic induction tomography for metal flow visualization

Magnetic induction tomography (MIT) is a new technique to image the electromagnetic properties of an object by mutual induction data of pairs of excitation and sensing coils. MIT has potential in visualization of metal flow for continuous casting mainly because of its potential to deliver images with high temporal resolution. A dynamic magnetic induction imaging technique is developed with the ...

متن کامل

Diagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial

Objective(s): The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas.Methods: Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET...

متن کامل

Multi-excitation magnetoacoustic tomography with magnetic induction (MAT-MI)

Magnetoacoustic tomography with magnetic induction (MAT-MI) is an approach proposed to do non-invasive electrical conductivity imaging of biological tissue using magnetic induction and ultrasound measurements. In the present study, based on the analysis of the relationship between the conductivity distribution and the generated MAT-MI acoustic source, we propose a new multi-excitation algorithm...

متن کامل

Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review

Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012